skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grzesik, E_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Black spruce forest communities in boreal Alaska have undergone self‐replacement succession following low‐to‐moderate severity fires for thousands of years. However, recent intensification of interior Alaska's fire regime, particularly deeper burning of the soil organic layer, is leading to shifts to deciduous‐dominated successional pathways, resulting in many socioecological consequences. Both fuel load quantity and quality (or “burnability”) influence black spruce plant communities' potential to burn. Even relatively low fuel loads, such as those seen in black spruce forest understory, can be highly influential drivers of fire behavior due to their high flammability. Additionally, black spruce community self‐replacement following fire can be largely attributed to the suite of functional and life history traits possessed by the species dominating these communities. We used fuel load (quantity and quality) and amount of within‐population plant trait variation (coefficient of variation; CV) as community‐level emergent properties to investigate black spruce forest vulnerability and resilience to a changing fire regime across the landscape. Our burn severity potential index (BSPI), calculated from fuel load quantity and quality measurements, indicates that drier, higher elevation stands with thicker active layers were the most vulnerable to fire‐induced vegetation shifts under a changing fire regime. Forest resilience to fire‐induced vegetation shift, represented by higher CV, was negatively associated with BSPI and greatest in ecoregions dominated by lowland black spruce forests. Together, these analyses provide critical information for determining the likelihood of stand‐replacing shifts in dominant vegetation following fire and for implementing appropriate ecosystem management practices. 
    more » « less